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Abstract: Four novel diterpenoids, spongiabutenolides A - D (2-5), all of which contain a y-
hydroxybutenolide moiety, have been isolated from a Philippines marine sponge of the genus Spongia.
The structures of spongiabutenoiides A - [ (2-5) and the methyi esters 6 and 7 were eiucidated by
interpretation of spectral data. Spongiabuteonolide A (2) was synthesized from spongia-13(16),14-
diene-19-oic acid (1) by singlet oxygen oxidation. © 1999 Elsevier Science Ltd. All rights reserved.
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Dictyoceratid sponges are a rich source of bioactive terpenoid metabolites, including the anti-
inflammatory sesterterpene manoalide and the protein phosphatase inhibitor dysidiolide.'? Sesquiterpenes
with the pentacyclic scalarin skeleton containing either furan or y-hydroxybutenolide moieties have previously
been described,’* as well as linear and tetracyclic diterpenoid furan derivatives from Spongia spp.>® A major
class of metabolites isolated primarily from sponges of the genus Spongia consists of diterpenoids containing
the tetracyclic spongian carbon skeleton, exemplified by (+)-spongia-13(16),14-diene-19-oic acid (1).” In
addition to yielding furan 1 as the major metabolite, a collection of a Spongia sp. from the Philippines
contained a series of novel y-hydroxybutenolides based on the spongian skeleton. Spongiabutenolides A - D
(2-5) consist of two pairs of regioisomeric y-hydroxybutenolides, which contain either a carboxylic acid or a
hydroxymethylene group at C-19. Furthermore, each spongiabutenolide consists of an inseparable mixture of
two stereoisomers at the hemiacetal carbon in the y-hydroxybutenolide ring, which complicated both

purification and structural elucidation in this series. In this paper, we report the structural elucidation of the
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A sample of Spongia sp. (collection # NCI 2416) was collected by hand using SCUBA
(-15m) at the southwest point of Haningad Island in the Philippines in May 1997. The 'H NMR spectrum of a
methanolic extract of the sponge revealed the presence of the furan 1, but also contained a series of broad

singlets between 5 and 7 ppm. Chromatography of the methanolic extract resulted in the isolation of furan 1

«n2an

(5 x 10™ % wet wt) as the major secondary metabolite, followed by a 7:4 mixture of the spongiabutenolides A
(2,7 x 10° % wet wt) and B (3, 4 x 10~ % wet wt), spongiabutenolide C (4, 8 x 10" % wet wt) and
spongiabutenolide D (5, 4 x 10 % wet wt).

complicated by the absence of a molecular ion in either the EI or FAB mass spectra, and because the

B
hemiacetal hydroxyl 51gnals were too broad to be observed in the '"H NMR spectrum in CDCl,. However, the
'H NMR spectrum of the mixture of 2 and 3 in DMSO-d, clearly indicated the presence of fou r hydroxy

signals, each of which was coupled to a hemiacetal proton signal, and the relative intensities of these peaks

0
suggested that the four pairs of signals could be assigned to two stereoisomeric hemiacetal groups on two
edt

5 o

regioisomeric y-hydroxybutenolides. Having recognized the presence of the hemiacetal group, we were able
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interpretation of the *C NMR spectrum. On treatment with diazomethane, the mixture of acids 2 and 3 was

di
converted into a mixture of the corresponding methyl esters 6 and 7, which were casily separated by HPLC.
h difficulty, thus allowing the speciral daia of the acids to be
acquired.

Both methyl esters 6 and 7 had the same molecular formula, C,,H,,0, which gave rise to a pseudo-

6 and 7 was complicated both by signal overlap and the multiplicity observed for certain signals due to the
presence of two stereoisomers at each hemiacetal center. The use of 1D-TOCSY experiments was critical for
assignment of the '"H NMR spectra, since every proton spin system could be distinguished by selective
irradiation of a well-resolved signal in each system. The *C NMR data was then unambiguously assigned

using both HMQC and HMBC data. In the HMBC spectrum of methyl ester 6, there were correlations



which a series of correlations, C-5 to Me-20 to C-9 to Me-17, could be traced. Ti
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hydroxybutenolide ring. In the HMBC spectrum of methyl ester 7, a similar set of correlations established the
ABC tricyclic ring system but the Me-17 signal at 8 1.09 showed a correlation to an olefinic carbon signal at

P T atar<L V4

of butenolides 2 and 6. In both spectra, ROESY correlations were observed between the Me-
signa]s, and in the spectrum of the methyl ester 6 there was a further correlation from the Me-20 signal to the

ester signal at 8 3.60, indicating that the two methyl g
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respect to frans-fused six-membered rings and on the same face of the molecules. The Me-18 signal showed a
ROESY correlation to the H-5 signal, as expected for the stereochemistry illustrated. Having determined the

structures of the methyl esters 6 and 7, were able to assign the NMR data for spongiabutenolides A (2)

) 4a8s1 vily U4

aan +lo 1D Aoy . n-n 1‘ 4\

{3) from the HMQC, HMBC and ROESY spectra (T 1). The structure of spongiabuticnolide A (Z) was

confirmed by singlet oxygen oxidation of spongia-13(16),14-diene-19-oic acid (1) using an established

procedure.® Spongiabutenolide B (3) was also observed by 'H NMR as a product of this reaction, but no
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attempt was made to purify it because it was such a minor product {ca. 6%).
Spongiabutenolides C (4) and D (5) are isomeric and have the molecular formula C,,H;,0,, which was

determined from the low resolution mass spectral data coupled with the *C NMR spectrum of alcohol 4. The
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hat were assigned to a y-hydroxybutenolide ring with the same
regiospecificity as that of spongiabutenolide A (2) but the regiospecificity of the y-hydroxybutenolide ring in
alcohol 5 had to be assumed from the chemical shift of H-16 at § 5.82 in the '"H NMR spectrum. The

Qs

4 was assigned using ROESY data but that of 5 was assumed.
Regioisomeric mixtures of y-hydroxybutenolides, together with the corresponding furans, have been

reported previously.” We had earlier demonstrated that regioisomeric mixtures of y-hydroxybutenolides could
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be synthesized by singlet oxygen oxidation of 3-substituted and 3,4-disubstituted furans and that
regiospecificity could be induced by employing a hindered base to catalyze the rearrangement of the

intermediate 'O, addition product.* We used this reaction to synthesize a >10:1 mixture of y-

~ o <

cybutenolides 2 and 3 from the 3,4-disubstituted furan acid 1. Schmitz and coworkers recently reported

y-methoxybutenolides corresponding to the y-hydroxybutenolides 2 and 3, and speculated about their origin.’

We suspect that the y-methoxybutenolides are artifacts resulting from storage in methanol or extraction with



group. We believe that the spongiabutenoiides A - D (2-5) are natural products since they were clearly present
in crude methanolic extracts prepared under mild, neutral conditions. All of the compounds above were tested

for anti-cancer activity in a 25 cell-line panel but none showed significant cytotoxicity.

Experimental

General: All solvents used in the isolation and purification of the compounds were distilled prior to use. All

137 .1

cperiments except 'C and DE
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experiments were run using a Varian Inova 300 MHz spectrometer.
*C and DEPT spectra were collected on a Varian Gemini 400 MHz spectrometer. HRMS data were obtained

from the mass spectrometry facility at the University of Minnesota and LRMS data were obtained using a

Isolation and Characterization: The specimen of Spongia sp. was collected by hand using SCUBA while

diving at depths of 15-20 m at the southwest point of Haningad Island in the Philippines in May 1997 and was

kept frozen until extraction with MeOH (4 x 1L). The crude exiract was partitioned between equal volumes of
EtOAc and H,0 (2 x 200 mL), and the organic extract further partitioned using normal phase silica VL.C

(vacuum liquid chromatography) separation eluting with a stepwise gradient from hexane to EtOAc. The

£

in ethyl acetate. Material eluting using 40% hexane in EtOAc was subjected to normal phase HPLC using 1:1

hexane/EtOAc. The major components of this fraction eluted at 10.6 min, and contained a mixture (53 mg) of

1.0 mg), appeared as well resolved peaks at 13 and 15.6 min. Attempts to separate acids 2 and 3 using normal

and reversed phase chromatography were initially unsuccessful, but after treatment with diazomethane

reversed phase HPLC using 30% 11,0 in MeOH as eluant. Samples of the purified acids, spongiabutenolide A

(2) and spongiabutenolide B (3), were eventually obtained by reversed phase HPLC using a new column.

Spongiabutenolide A (2): white solid; [a], = 28.7 (¢ 7.1, MeOH); UV (MeOH) 215 nm (g 9330); IR (film)
3260, 2920, 1730, 1705, 1695 cm™"; '"H NMR (300 Mllz, DMSO-dj) see Table; *C NMR (100 MHz,
DMSO-d;) see Table; CTHRMS m/z349.2016 [M+H]" (caled. for C,yH,O5 335.2014).

Spongiabutenalide B (3): white solid; [a], = 27.1 {¢ 3.4, MeOH); UV {MeOH) 209 nm (g 8480); IR (film)

3250, 2945, 1750, 1705, 1020 cm™'; 'H NMR (300 MHz, DMSO-d,) see Table; *C NMR (100 MHz,
)

DMSO-d;) see Table; CIHRMS m/z349.2016 [M+IT]" (caled. for C,,H,,05 335.2014).
Spongiabutenolide C (4): white solid; '"H NMR (CD,0D) 8 6.06 (br s, 1 H, H-15),3.70 (d, | H, /=14 Hz, H-

e’
O
faed
(V8]
BN
<
—_
&
—
=
-
1l

4 Hz, H-19'), 2.36 (m, 1 H, H-12), 2.29 (m, 1 I, 11-12"), 2.02 (m, 1 H, H-7), 1.87 (m, 1
H, H-11), 1.79 (m, 1 H, H-1), 1.77 (m, 1 H, H-6), 1.77 (m. 1 t, H-3), 1.66 (m, 1 H, H-2), 1.65 (m, 1 H, H-6"),
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1, CIHRMS m/z335.2228 [M+H]" (calcd. for C, H;,0, 335.2222).
(CD,0D) selected signals, 6 5.82 (brs, 1 H, H-16),3.72 (d, 1

2.60 (m, 1 H, H-7), 2.48 (m, 1 H, H-12), 2.25 (m, 1 H, H-
AS m/z 333.2.

-d,) see Table; ’C NMR (DMSO-d) see
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Spongiabutenolide A methyl ester (6): white solid ; 'H NMR (DMS
Table; ESIMS m/z 361.0.

o

ngiabutenolide B meihyl ester (7). white solid; 'H NMR (DMSO-d,) see
Table; ESIMS m/z" 361.1.

Singlet oxygen oxidation of spongia-13(16), 14-diene-19-oic acid (1): A stream of O, was bubbled through a
stirred solution of furan 1 (50 mg), diisopropylethylamine (100 pl), and polymer-bound rose bengal catalyst
(1 mg). The solution was cooled to -78 “C and singlet oxygen was generated by shining a 150 watt sodium
lamp on the reaction vessel. After 1 h at -78 °C, the solution was allowed to warm and the solvent was
evaporated under vacuum, after which the residue was dissolved in EtOAc and passed through a small plug of
silica. Final purification of spongiabutenolide A (2, 38 mg, 69% yield) was achieved using normal phase
HPLC using 55% hexane in THF as eluant.
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